Steady Axisymmetric Vortex Flows with Swirl and Shear
نویسندگان
چکیده
A general procedure is presented for computing axisymmetric swirling vortices which are steady with respect to an inviscid flow that is either uniform at infinity or includes shear. We consider cases both with and without a spherical obstacle. Choices of numerical parameters are given which yield vortex rings with swirl, attached vortices with swirl analogous to spherical vortices found by Moffatt, tubes of vorticity extending to infinity and Beltrami flows. When there is a spherical obstacle we have found multiple solutions for each set of parameters. Flows are found by numerically solving the Bragg-Hawthorne equation using a non-Newton-based iterative procedure which is robust in its dependence on an initial guess.
منابع مشابه
On vortex stretching and the global regularity of Euler flows I. Axisymmetric flow without swirl
The question of vortex growth in Euler flows leads naturally to the emergence of paired vortex structure and the “geometric” stretching of vortex lines. In the present paper, the first of two papers devoted to this question, we examine bounds on the growth of vorticity in axisymmetric flow without swirl. We show that the known bound on vorticity in this case, exponential in time, can be improve...
متن کاملA Numerical and Analytical Study of Vortex Rings with Swirl
We study the growth of disturbances to vortex rings with swirl, which are exact solutions of the Euler equations of inviscid ow, using two contrasting methods. The motion of the perturbed vortex rings can be regarded as a prototype for the inviscid dynamics of vortex structures in 3D. Exact rings with swirl are computed as steady, axisymmetric ows using a variational method. Asymptotic analysis...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملVortex core behaviour in confined and unconfined geometries: a quasi-one-dimensional model
Axisymmetric vortex core flows, in unconfined and confined geometries, are examined using a quasi-one-dimensional analysis. The goal is to provide a simple unified view of the topic which gives insight into the key physical features, and the overall parametric dependence, of the core area evolution due to boundary geometry or far-field pressure variation. The analysis yields conditions under wh...
متن کاملGrowth of anti-parallel vorticity in Euler flows
In incompressible Euler flows, vorticity is intensified by line stretching, a process that can come either from the action of shear, or from advection with curvature. Focusing on the latter process, we derive some estimates on the maximal growth of vorticity in axisymmetric flow without swirl, given that vorticity support volume or kinetic energy is fixed. This leads to consideration of locally...
متن کامل